
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Saving the Planet, One Handset at a Time:
Designing Low-Power, Low-Bandwidth GPUs

Thomas J. Olson∗

ARM Ltd

(a) original (b) S3TC 4bpp (c) ASTC 5.1bpp (d) ASTC 3.6bpp (e) ASTC 2bpp

Figure 1: ASTC Texture Compression gives applications control of the quality vs memory bandwidth tradeoff

Abstract

GPUs for mobile devices have to deliver ever-increasing perfor-
mance and capability while living within strict power and memory
bandwidth limits. In this talk we’ll explore how these limits influ-
ence the design of mobile GPUs, and how applications can exploit
GPU features to achieve the best power efficiency and performance,
using ARM’s MaliTM GPU family as a case study.

1 Introduction

Power consumption has become a key factor in determining the per-
formance of modern mobile GPUs. Among the various contributors
to GPU power dissipation, external memory bandwidth stands out,
because of its magnitude and because it is independent of silicon
technology and local circuit optimizations. Consumers of memory
bandwidth include frame buffer read/write, texture fetch, display
output, and geometry input; which if these is dominant varies with
the application, but all are important at one time or another.

To reduce frame buffer read/write bandwidth, many mobile GPUs
use some form of deferred rasterization. In this technique, the frame
buffer is conceptually divided into fixed-size rectangles or tiles. Tri-
angles submitted by the application are not drawn immediately, but
are instead saved in a database that is indexed by the tiles that they
overlap. When the application signals that the frame is complete,
tiles are rendered one at a time into an on-chip memory store or tile
buffer, using the database to extract only the triangles relevant to
the current tile. When all triangles for a given tile have been ren-
dered, the tile is written out to the appropriate place in the external
frame buffer. Since most depth, stencil, and color buffer accesses
are confined to the on-chip tile buffer, frame buffer bandwidth is
limited to the final write to external memory. However, application
behavior can affect how effective this strategy is, as we’ll discuss.

As mobile device screen resolutions continue to grow, even writing
tiles to external memory becomes a significant consumer of mem-
ory bandwidth. However, in real-world applications it is surpris-
ingly common for many of the tiles in a frame to be unchanged

∗e-mail:Tom.Olson@arm.com

from the previous frame, which makes writing those tiles to mem-
ory unnecessary. In the latest ARM Mali GPUs, each tile written to
memory is accompanied by a signature. When a newly rendered tile
is ready to be written back to memory, the GPU computes its sig-
nature and compares it to the one for that tile in the previous frame;
if they are the same, the memory write is cancelled. This can save
50% or more of external memory bandwidth in many widely used
applications.

With frame buffer bandwidth reduced to a minimum, the next
biggest consumer of memory bandwidth for most applications is
texture access. While caching helps to minimize redundant tex-
ture reads within a frame, most applications have such large work-
ing sets that caching texture data between frames is impractical.
Instead, application developers are encouraged to use lossy com-
pression methods to reduce texture bandwidth and improve cache
efficiency. Unfortunately, existing compressed texture formats lack
flexibility and have quality limitations that make them unsuitable
for many use cases. To address these problems, we introduce a
new format called Adaptive Scalable Texture Compression (ASTC)
[Nystad et al. 2012]. ASTC supports bit rates ranging from 8 bits-
per-pixel (bpp) down to less than 1bpp in very fine steps, giving the
application a high degree of control over the size / quality trade-off.
At any bit rate, texels can have from one to four color components.
The format supports both HDR and standard (normalized) dynamic
ranges, and can encode 3D as well as 2D images. Surprisingly, this
flexibility comes with no penalty in quality or coding efficiency; on
the contrary, ASTC outperforms S3TC and PVRTC by several dB
(PSNR) at comparable bit rates, and is competitive with advanced
formats like BC6H and BC7. We’ll show examples of the quality at
various bit rates, and talk about ways to exploit ASTCs flexibility
in game engines and other applications.

References

NYSTAD, J., LASSEN, A., POMIANOWSKI, A., ELLIS, S., AND
OLSON, T. 2012. Adaptive scalable texture compression. In
Proceedings of the Conference on High Performance Graphics,
Eurographics Association (forthcoming).


